Aligning Assessments with Course Objectives

Sharon Karkehabadi
Student Learning Outcomes Specialist
Office of Institutional Research, Planning, and Assessment
Northern Virginia Community College
Spring 2013
Objectives for today’s workshop

• Distinguish different types of learning objectives
• Define direct and indirect methods of assessments
• Align assessment methods with different learning objectives
• Analyze an assessment method for content validity
• Evaluate your assessment methods and make improvements
• Integrate different assessment measures into your courses.
Identify Student Learning Outcomes

Use Results

Curriculum Mapping

Assessment at NOVA

Gather Evidence

Methods of Assessment
What is Learning?
Three Critical Components of Learning:

1. Learning is a **process**, not a product. However, because this process takes place in the mind, we can only infer that it occurred from the students’ products or performances.

2. Learning involves **change** in knowledge, beliefs, behaviors, or attitudes. This change unfolds over time; it is not fleeting but rather has a lasting impact on how students think and act.

3. Learning is not something done *to* students, but rather something students themselves do. It is the direct result of how students interpret and respond to their **experiences**-conscious and unconscious, past and present.

Learning Goals

Goals serve as the basic organizing feature of motivated behavior…they act as the compass that guides and directs a broad range of purposeful actions…

Learning Goals vs. Performance Goals vs. Work-Avoidant Goals

Learning Goals: Students try to gain competency and truly learn what an activity or task can teach them.

Performance Goals: Students do what is necessary to get a good grade.

Work-Avoidant Goals: Students desire to finish work as quickly as possible with as little effort as possible.

Difference between...

Learning Objectives

- **Course**-level statements describing the knowledge, skills, attitudes, and values that students gain from a course.
- More detailed and course content-specific

Student Learning Outcomes

- **Program**-level statements describing the knowledge, skills, attitudes, and values that students gain from the program.
- More overarching and often encompass multiple courses
So...how can teachers motivate students to learn

When students find

- positive value in a learning goal or activity,
- expect to successfully achieve a desired learning outcome,
- and perceive support from their environment,

they are likely to be strongly motivated to learn.

Steps to Assessing Course Objectives

1. Identify course objectives or Student Learning Outcomes
2. Determine methods of assessment
3. Determine assignments/activities used to achieve objectives through curriculum mapping
4. Gather evidence
5. “Close the loop”
 - Review and interpret results
 - Recommend actions
 - Make changes
 - Measure effectiveness of changes
Reflection

Why assess?
Purpose of Assessment

Formative: To inform teaching and improve learning

“To provide evidence of how students have learned what we intended them to learn.”

http://www.cmu.edu/teaching/design/teach/design/assessments.html
Assessing answers…

1. Are we teaching our course objectives? What are our students actually learning?

2. What can we do to help our students learn? What types of changes can we make (to assignments, activities, materials) to increase actual student learning?
Reflection

What types of assessments do I use to measure my intended course/learning objectives?
Methods of Assessment

Direct and Indirect
Indirect Methods

Ask students to reflect on their learning rather than demonstrate it.
- Palomba & Banta, 1999

Provide signs that students are probably learning, but the evidence of exactly what they are learning is less clear.
– Suskie, 2004

• Surveys
 • Student
 • Alumni
 • Employer
• Exit interviews
• Focus groups
• Job placement rates
• Course evaluations
Direct Methods

Require students to display their knowledge and skills as they respond to the instrument itself.

- Palomba & Banta, 1999

Are tangible, visible, self-explanatory evidence of exactly what students have and haven’t learned.

- Suskie, 2004

- Tests/exams
- Rubrics for evaluating:
 - Essays/Papers
 - Lab work
 - Exam questions
 - Capstone projects
 - Exhibits
 - Performances/Presentations
 - Portfolios of student work
 - Comprehensive exams
Aligning Assessments with Course Objectives
Why Align Assessments?

1. Increases the probability that we will provide students with opportunities to learn and practice knowledge and skills to be assessed.

2. “Good grades” are more likely to translate into “good learning.”

http://www.cmu.edu/teaching/designteach/design/assessments.html
Questions to Keep in Mind

• What will the student’s work on the assessment (multiple choice answers, essays, project, presentation, etc.) tell me about their level of competence on the targeted learning objectives?

• How will my assessment of their work help guide students’ practice and improve the quality of their work?

• How will the assessment outcomes for the class guide my teaching practice?

http://www.cmu.edu/teaching/designteach/design/assessments.html
Categories of Learning Objectives

Bloom’s Taxonomy

Old Version

New Version
Categories of Learning Objectives: Fink’s

THE TAXONOMY OF SIGNIFICANT LEARNING

Learning How to Learn
- Becoming a better student
- Inquiring about a subject
- Self-directing learners

Foundational Knowledge
Understanding and remembering:
- Information
- Ideas

Application
- Skills
- Thinking:
 - Critical, creative & practical thinking
 - Managing projects

Caring
Developing new...
- Feelings
- Interests
- Values

Human Dimension
Learning about:
- Oneself
- Others

Integration
Connecting:
- Ideas
- People
- Realms of life
Assessment Methods for “Remembering”

Learning Objectives

<table>
<thead>
<tr>
<th>Type of Learning Objective</th>
<th>Examples of Types of Assessment</th>
<th>How to Measure</th>
</tr>
</thead>
</table>
| **Remember** Students will be able to: | • Objective Test items that require students to recall or recognize information:
 • Fill-in the Blank
 • Multiple Choice items with question stems such as, “what is a…”, or “which of the following is the definition of…”
 • Labeling diagrams
 • Reciting (orally, musically, or in writing) | • Accuracy – correct vs. number of errors
• Item Analysis (at the class level, are there items that had higher error rates? Did some items result in the same errors?) |

http://www.cmu.edu/teaching/designteach/design/assessments.html
Assessment Methods for “Understanding”

Learning Objectives

<table>
<thead>
<tr>
<th>Type of Learning Objective</th>
<th>Examples of Types of Assessment</th>
<th>How to Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand Students will be able to:</td>
<td>Papers, oral/written exam questions, problems, class discussions, concept maps, homework assignments that require (oral or written): Summarizing readings, films, speeches, etc.</td>
<td>Scoring or performance rubrics that identify critical components of the work and discriminates between differing levels of proficiency in addressing the components</td>
</tr>
<tr>
<td>• interpret</td>
<td>• Comparing and/or contrasting two or more theories, events, processes, etc.</td>
<td></td>
</tr>
<tr>
<td>• exemplify</td>
<td>• Classifying or categorizing cases, elements, events, etc., using established criteria</td>
<td></td>
</tr>
<tr>
<td>• classify</td>
<td>• Paraphrasing documents or speeches</td>
<td></td>
</tr>
<tr>
<td>• summarize</td>
<td>• Finding or identifying examples or illustrations of a concept, principle</td>
<td></td>
</tr>
<tr>
<td>• infer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• compare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• explain</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://www.cmu.edu/teaching/designteach/design/assessments.html
What is a rubric?

A scoring guide composed of
• Criteria that you are looking for and
• Guidelines for evaluating each of those things (Suskie, 2004)
Why Use Rubrics?

• If the assignment requires an answer more complicated than one that could be corrected with an answer key.

• When “complex products or behaviors” are being evaluated, which require more than a right or wrong answer.

• Rubrics are often used to assess how well students perform a task (speaking, writing, performing, etc.)
 • as opposed to whether an answer is right or wrong
 • “quality continuum” from exceptional to not meeting expectations
Assessment Methods for “Applying” Learning Objectives

<table>
<thead>
<tr>
<th>Type of Learning Objective</th>
<th>Examples of Types of Assessment</th>
<th>How to Measure</th>
</tr>
</thead>
</table>
| **Apply** | Activities that require students to use procedures to solve or complete familiar or unfamiliar tasks; may also require students to determine which procedure(s) are most appropriate for a given task. | - Accuracy scores
- Check lists
- Rubrics |
| Students will be able to: | • execute
• implement
• perform
• produce
• solve | |
| | • Labs
• Performances
• Problem sets
• Prototyping
• Simulations |
Assessment Methods for “Analyzing” Learning Objectives

<table>
<thead>
<tr>
<th>Type of Learning Objective</th>
<th>Examples of Types of Assessment</th>
<th>How to Measure</th>
</tr>
</thead>
</table>
| **Analyze** | Activities that require students to discriminate or select relevant from irrelevant parts, determine how elements function together, or determine bias, values or underlying intent in presented materials. These might include: Case studies, Critiques, Labs, Papers, Projects, Debates, Concept Maps, | • Rubrics
• Scored by instructor
• Juries
• External clients
• Employers
• Internship Supervisor
• Etc. |
Assessment Methods for “Evaluating” Learning Objectives

<table>
<thead>
<tr>
<th>Type of Learning Objective</th>
<th>Examples of Types of Assessment</th>
<th>How to Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate</td>
<td>A range of activities that require students to test, monitor, judge or critique readings, performances, or products against established criteria or standards.</td>
<td>Rubrics, scored by instructor, juries, external clients, employers, internship supervisor, etc.</td>
</tr>
<tr>
<td></td>
<td>These activities might include: Journals, Diaries, Critiques, Problem Sets, Product Reviews, Case Studies.</td>
<td></td>
</tr>
</tbody>
</table>

http://www.cmu.edu/teaching/designteach/design/assessment.html
Assessment Methods for “Creating”

Learning Objectives

<table>
<thead>
<tr>
<th>Type of Learning Objective</th>
<th>Examples of Types of Assessment</th>
<th>How to Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create</td>
<td>Research projects, musical compositions, performances, essays, business plans, website designs, prototyping, set designs</td>
<td>Rubrics, scored by instructor, juries, external clients, employers, internship supervisor, etc.</td>
</tr>
</tbody>
</table>

- Students will be able to:
 - generate
 - plan
 - produce

http://www.cmu.edu/teaching/designteach/design/assessments.html
Reflection

What assessment formats could I integrate into my courses?
Types of Tests

- **Limited-Choice:** Students choose from alternatives provided
 - True/False
 - Multiple Choice
 - Matching

- **Open-Ended:** Students formulate their own answers
 - Fill-in-the-blank/Completion
 - Short Answers
 - Essays
 - Problem-solving
 - Performance test items
Choosing Appropriate Types of Activities

After determining which type of test item would be appropriate for a given learning objective (limited-choice items and open-ended items), one must then decide which type of activity would effectively evaluate student learning.

<table>
<thead>
<tr>
<th>Learning Objectives</th>
<th>Most Suitable Test Item</th>
<th>Type of Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>The student will be able to name the parts of the human skeletal system.</td>
<td>Limited-choice</td>
<td></td>
</tr>
<tr>
<td>The student will be able to identify common characteristics of various genres of literature.</td>
<td>Limited-choice</td>
<td></td>
</tr>
<tr>
<td>The student will explain the processes and outcomes of communication and miscommunication within groups, teams, and leadership.</td>
<td>Open-ended</td>
<td></td>
</tr>
<tr>
<td>The student will describe the differences between translating, transliterating, and interpreting.</td>
<td>Open-ended</td>
<td></td>
</tr>
<tr>
<td>The student will exhibit appropriate laboratory safety skills.</td>
<td>Open-ended</td>
<td></td>
</tr>
</tbody>
</table>
Choosing Appropriate Types of Activities

After determining which type of test item would be appropriate for a given learning objective (limited-choice items and open-ended items), one must then decide which type of activity would effectively evaluate student learning.

<table>
<thead>
<tr>
<th>Learning Objectives</th>
<th>Most Suitable Test Item</th>
<th>Type of Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>The student will be able to name the parts of the human skeletal system.</td>
<td>Limited-choice</td>
<td>Fill-in-the-blanks</td>
</tr>
<tr>
<td>The student will be able to identify common characteristics of various genres of literature.</td>
<td>Limited-choice</td>
<td>Matching</td>
</tr>
<tr>
<td>The student will explain the processes and outcomes of communication and miscommunication within groups, teams, and leadership.</td>
<td>Open-ended</td>
<td>Essay</td>
</tr>
<tr>
<td>The student will describe the differences between translating, transliterating, and interpreting.</td>
<td>Open-ended</td>
<td>Short answers</td>
</tr>
<tr>
<td>The student will exhibit appropriate laboratory safety skills.</td>
<td>Open-ended</td>
<td>Performance</td>
</tr>
</tbody>
</table>
Using Tests to Assess SLOs

If you decide that using a test is the most effective way to assess an SLO, …

• Align test items with SLOs
 • Test items match specific SLOs
• Each instructor grades the test for his/her course
• Each instructor provides the SLO-related results for his/her section to program
• Data is aggregated across sections for program assessment
• Criteria for success is determined
 • Ex. The average grade on each SLO should be at least 75%.
• Data is reviewed and discussed
• Efforts to improve student learning are put in place
Using Tests to Assess Learning Objectives

Coordinating test items with course content builds content validity of the test.

It’s important to ensure the test encompasses a representative sample of both content (topics) and cognitive objectives (levels of understanding from Bloom’s taxonomy).

Constructing a blueprint or matrix (also called a “table of specifications”) could be helpful to determine if the content and objectives are in the same proportion on the test as they were addressed during instruction.
Sample Test Blueprint or Matrix

(Table of Specifications)

<table>
<thead>
<tr>
<th>Topic to be tested</th>
<th>% of period period devoted to topic</th>
<th>Level of Knowledge (from Bloom’s Taxonomy)</th>
<th>Questions measuring recall/comprehension</th>
<th>Questions measuring application/analysis</th>
<th>Questions measuring synthesis/evaluation</th>
<th># of questions</th>
<th>% of test devoted to topic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Questions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of test devoted to each level of understanding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Using Rubrics to Assess SLOs

- Review what is already in place
 - Ask faculty how they grade the assignment
 - SLO-related criteria could already exist in their grading systems
 - Use current scoring guide as a building-block for the program’s assessment method
- The same assignment is used twice – once for course grading and once for program assessment
- The rubric used for program assessment could also be incorporated into the course grading system used by individual instructors.
- Program decides if all student submissions are used for program assessment or if a sample will be sufficient
Steps to Using Rubrics to Assess SLOs

- Identify SLO
- Choose student work to be used for assessment
- Specify criteria for successful performance on specific SLO(s)
 - Include various performance levels from poorest to best
- Assign ratings to performance levels and descriptors for each criterion
- Devise a scoring procedure/process for collecting data
 - Using a sample vs. using all submitted work
 - Rubric is used by all instructors vs. small group apply rubric to work
- Determine criteria for success
- Data is reviewed and discussed
- Efforts to improve student learning are put in place

Adapted from “Course Embedded Assessment Process” from Larry Kelley, University of Louisiana Monroe
Example: Using Rubrics to Assess SLOs

• SLO: to provide a persuasive argument that clearly supports a given resolution to an ethical dilemma
• Student work to be used: essay
• Evaluation method
 • For course: determined by course instructor
 • For program assessment: rubric designed to score essay with criteria devoted to SLO; for each criterion, four levels of achievement with descriptions
• Criteria for success
 • For course: to earn a passing grade, a student must receive at least 70%
 • For program assessment: 80% of students must perform at least at “Good” level (with score of at least 3 out of possible total 4)
Grades vs. Assessment

- Course grades and assessment criteria differ (e.g., attendance, participation, homework completion, etc. may be part of course grade)
- A grade usually takes into account many components and typically does not pertain to only one SLO
- A grade does not provide enough information directly related to specific SLOs
- Grading standards may not be explicitly consistent across sections

Basically – If a grade relates to anything additional to a specific SLO, one cannot accurately tell if student achieved the SLO by the overall grade
Components of Course Grading Can be Used

• Assignments/quizzes devoted to only one SLO
• Break composite grades into subparts and focus on parts of grade related to SLO
 • Specific test/quiz items targeting SLO
 • Parts of rubric/checklists
Using Embedded Assessment Methods
Benefits of Using Course-Embedded Assessments

• Takes advantage that students are motivated to do well as assignment contributes to course grade
• Does not usually require anything extra of the students
• Is not costly (Instrumentation, Analysis and Reporting)
• Is faculty-driven and therefore more likely to be used to improve student learning
Benefits of Using Course-Embedded Assessments (cont).

• Feedback to faculty is often quick
• Will likely be used again in future semesters, thus more easily allowing for follow-up assessments
• More easily directly linked to specific SLOs
• Convenience
• Provides students with clear expectations and criteria for assessing achievement of SLO
Example of Using Grading Component for Assessment

SLO: Effectively synthesize past research
Assignment: Report

Components of Report Grade for the Course:
- Effective introduction (10%)
- Literature review (20%)
- Appropriate thesis statement (20%)
- Evidence supports hypothesis (20%)
- Conclusion connects to body of report (20%)
- Language/formatting (10%)
Components of Report Grade

<table>
<thead>
<tr>
<th></th>
<th>Effective introduction (10 points)</th>
<th>Literature review (20 points)</th>
<th>Appropriate thesis statement (20 points)</th>
<th>Evidence supports hypothesis (20 points)</th>
<th>Conclusion connects to body of report (20 points)</th>
<th>Language/formatting (10 points)</th>
<th>Total Report Grade (100 points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>9</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>10</td>
<td>93</td>
</tr>
<tr>
<td>Student 2</td>
<td>8</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>14</td>
<td>8</td>
<td>81</td>
</tr>
<tr>
<td>Student 3</td>
<td>4</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>15</td>
<td>7</td>
<td>63</td>
</tr>
<tr>
<td>Student 4</td>
<td>5</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>12</td>
<td>7</td>
<td>66</td>
</tr>
<tr>
<td>Student 5</td>
<td>7</td>
<td>12</td>
<td>15</td>
<td>14</td>
<td>16</td>
<td>8</td>
<td>72</td>
</tr>
<tr>
<td>Student 6</td>
<td>6</td>
<td>14</td>
<td>13</td>
<td>15</td>
<td>12</td>
<td>6</td>
<td>66</td>
</tr>
<tr>
<td>Student 7</td>
<td>3</td>
<td>4</td>
<td>10</td>
<td>14</td>
<td>14</td>
<td>9</td>
<td>54</td>
</tr>
<tr>
<td>Student 8 - 45</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Average</td>
<td>12.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Backward Design Instructional Model

“One starts with the end—the desired results—and then derives curriculum from the evidence of learning” — Wiggins and McTighe, 2000
Backwards Design

http://www.carla.umn.edu/assessment/VAC/CreateUnit/p_1.html
Worksheet for Designing a Course

<table>
<thead>
<tr>
<th>Learning Goals for Course</th>
<th>Ways of Assessing this Kind of Learning</th>
<th>Actual Teaching-Learning Activities</th>
<th>Helpful Resources (e.g., people, things)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://www.deefinkandassociates.com/GuidetoCourseDesignAug05.pdf
For each new topic, students need an **introduction** to the topic (white box) and then opportunities to **apply and use** (shaded parts).

<table>
<thead>
<tr>
<th>Topic 1</th>
<th>Topic 2</th>
<th>Topic 3</th>
<th>Topic 4</th>
<th>Topic 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Assignments/Assessments

As each new topic is introduced and studied, assignments/assessments can become more complex, dealing with more interactions among topics.

http://www.deefinkandassociates.com/GuidetoCourseDesignAug05.pdf
Midcourse Adjustments
Keeping in Tune

with Student Learning and Attitudes:
Classroom Assessment Techniques (CATs)

“Simple, non-graded, in-class activities designed to give you and your students useful feedback on the teaching-learning process.”

Classroom Assessment Techniques (CATs)

Muddiest Point: At the end of class, ask students to jot down a quick response to one question:

"What was the muddiest point in the ... [class meeting, readings, homework assignment, lecture, etc.] ? (Angelo & Cross, 1993)

Additional question (Bateman & Roberts, 1992):

What percent of mud was due to:

a. Unclear presentation by instructor?
b. Lack of opportunity to ask questions?
c. Your lack of preparation?
d. Your lack of participation in class instruction?
e. Other?
Assessing Student Learning Outcomes
Assessing Student Learning Outcomes

1. Determine which SLOs to assess
2. Determine how to assess
3. Develop assessment method
 a. Discuss with faculty what assignments they use to evaluate SLO
 b. Ask faculty to provide any examples of scoring systems (rubrics) they would like to share.
 c. With small group of interested faculty, draft method of assessment.
 d. Share with faculty, solicit feedback, finalize.
Assessing Student Learning Outcomes

4. Determine which sections will take part
 • Examine various possibilities
 • All sections take part and rubric is used by instructors
 • A certain number of sections take part and rubric is used by instructors
 • A certain number of sections take part, student work is provided to small assessment group, which will apply the rubric
 • Each section provides 8 randomly selected student submissions to small assessment group, which will apply the rubric
Assessing Student Learning Outcomes

5. Use method of assessment and gather data (cont.)
 a. All sections must include the activity within specified three weeks of semester.
 i. The activity can be used on a test, as a quiz, or as a graded in-class activity; each instructor decides for his/her individual section.
 ii. Small assessment group provides instructors with the activity and answer key.
 iii. Instructors grade assignment and provide results to small assessment group.
 - Each section provides number of students and the average score for the section
Aggregated Data on SLO

- SLO: Effectively synthesize past research
- Average: 12.57 (of 20) = 62.85%
- Criteria for success: The overall average for the grading component devoted to synthesizing past research must be at least 15 (of 20) = 75%
- Level of achievement met? No
In Conclusion
Exemplary Assessment
8 Characteristics of Exemplary Assessment

1. Valid
 Yields useful information to guide learning

2. Coherent
 Is structured so that the activities lead to desired performance

3. Authentic
 Addresses ill-defined problems/issues that are enduring or emerging

4. Rigorous
 Requires use of declarative, procedural, and metacognitive knowledge

Huba and Freed, 2000
8 Characteristics of Exemplary Assessment

5. Engaging Provokes student interest and persistence

6. Challenging Provokes, as well as evaluates, student learning

7. Respectful Allows students to reveal their uniqueness as learners

8. Responsive Provides feedback to students leading to improvement

Huba and Freed, 2000
1. What declarative knowledge *knowing the facts and concepts in the discipline* do I expect students to draw upon in this task?

2. What procedural knowledge *knowing how to reason, inquire, and present knowledge in the discipline* do I expect students to use?

3. What metacognitive knowledge *e.g., setting goals, determining when additional information is needed, and assessing the fruitfulness of a line of inquiry* do I expect student to develop and reveal?

4. In what real-life settings do individuals use the knowledge that I identified and what ill-defined problems do they typically address?

Huba and Freed, 2000
5. For each ill-defined problem, what task(s) could I sketch out for students to complete?

6. Which task best exemplifies the characteristics of an exemplary assessment task (See previous slide)?

7. Which assessment format will work best for this task?

8. What criteria should my students and I use in shaping and critiquing student work?

9. In view of 8, and if necessary, how can I improve the task so as to reflect more clearly the characteristics of an exemplary assessment task?

Huba and Freed, 2000
Reflection

What characteristics of exemplary assessment are present in my assessment tasks?

How could I enhance my assessments to reflect those characteristics more clearly?
Assessment: An On-going Process

- Assessment is an on-going process, iterative process
 - Each assessment is a “pilot test” for the next one
 - Keep a record of what worked…and what didn’t
 - There’s always error
- Each iteration brings you:
 - The benefit of experience
 - A more accepting environment
 - Baselines for future measurements
- Goal: A valid and reliable assessment
 - Student work: does it reflect the learning outcome?
 - Assessment method: does it measure the learning outcome?
 Does it measure what you intend it to measure?
 - Assessment: is scoring consistent?

Objectives for today’s workshop

• **Distinguish** different types of learning objectives
• **Define** direct and indirect methods of assessments
• **Align** assessment methods with different learning objectives
• **Analyze** an assessment method for content validity
• **Evaluate** your assessment methods and make improvements
• **Integrate** different assessment measures into your courses.
Further Resources

ASSESSMENT LOOP RESOURCES

LEARN MORE

- Welcome
- For Students
- Program Evaluation
- Student Learning Outcomes
- Assessment Loop Resources
- Reports
- Resources & Links
- Staff
- Contact Us

Assessment Cycle of Continuous Improvement

The loop represents the continuous nature of assessing student learning outcomes. Assessment is comprised of several steps. Click on any step to access information and resources on that topic.
Questions?

Contact: Sharon Karkehabadi
Student Learning Outcomes Specialist
Office of Institutional Research, Planning, and Assessment
703-764-7390
skarkehabadi@nvcc.edu