NOVA COLLEGE-WIDE COURSE CONTENT SUMMARY
MTH 157 - ELEMENTARY STATISTICS (4 CR.)

Course Description

Presents elementary statistical methods and concepts including descriptive statistics, estimation, hypothesis testing, linear regression, and categorical data analysis. Credit will not be awarded for both MTH 157 and MTH 240 or MTH 241. Lecture 4 hours per week.

General Course Purpose

The purpose of this course is to provide students with the abilities to understand the results of statistical studies and to perform descriptive and inferential statistics in their fields of interest.

Course Prerequisites/Corequisites

Prerequisites: Competency in Math Essentials Units MTE 1-5 as demonstrated through the placement and diagnostic tests, or by completion through unit 5 in an MTT course. A student who provides official evidence of a minimum mathematics score of 520 on the SAT or a minimum score of 22 on the ACT taken within the last two years may register for these courses without taking the math placement test.

Course Objectives

Upon completion of this course, the student should be able to:

A. define and use the following terms:
 1. population
 2. frame
 3. population parameters
 4. sample
 5. statistic
 6. inferential statistics
 7. descriptive statistics

B. discuss the importance of and uses of descriptive and inferential statistics

C. define and use the following terms:
 1. scientific method
 2. compounding variable
 3. units
 4. response variable
 5. explanatory variable
 6. level
 7. discrete data
 8. continuous data
 9. level of measurement
 10. nominal
 11. ordinal
 12. interval
 13. ratio data
 14. qualitative data
 15. quantitative data
 16. time series data
 17. stationary process
 18. non-stationary process

D. identify whether a variable is explanatory or response

E. determine if a study is controlled or observational

F. identify the level of measurement of data as either qualitative or quantitative

G. identify the level of measurement of data as nominal, ordinal, interval or ratio scale

H. define and use the following terms:
 1. frequency distribution
 2. bar chart
3. relative frequency
4. cumulative frequency
5. histogram
6. stem and leaf display
7. ordered array
8. time sequence plot
I. evaluate the quality of graphs
J. construct a bar graph, stacked bar graph, pie chart, frequency distribution, relative frequency distribution, cumulative frequency distribution, stem and leaf display, histogram and line graph
K. follow the guidelines for constructing a bar chart that is aesthetically pleasing and informative
L. follow the guidelines for determining the number of classes and class width of a frequency distribution
M. write a paragraph explaining the information provided by a visual display of data
N. define the use of the following terms:
 1. arithmetic mean
 2. sample mean
 3. population mean
 4. outliers
 5. resistant statistical measure
 6. nonresistant statistical measure
 7. median
 8. trimmed mean
 9. mode
 10. moving average
 11. variance
 12. standard deviation
 13. mean absolute deviation
 14. range
 15. percentile rank
 16. quartile rank
 17. inter-quartile range
 18. box plot
 19. Z-score
 20. grouped data
 21. proportion measure
O. find and interpret the four measures of central tendency - mean, median, mode, and trimmed mean
P. determine which measure of central tendency is most appropriate for a given set of data
Q. find and interpret a moving average
R. find and interpret the three measures of variation - variance, standard deviation and range
S. find and interpret the two measures of relative position - percentiles and quartiles
T. find and interpret the interquartile range, and use this to identify outliers
U. construct and interpret a box plot
V. find the Z-scores for a set of data, and use the Empirical Rule to interpret the meaning
W. find and interpret the mean and variance of grouped data
X. find and interpret the proportion of a group that has a given characteristic
Y. construct and interpret scatterplots
Z. find and interpret the correlation coefficient
AA. discuss the dangers of misinterpreting the correlation coefficient
BB. use the least squares method to find regression equation and compute the error for each data point
CC. find the average value of a model's error and the variance of the errors
DD. define the use of the following terms:
 1. simple event
 2. sample space
 3. event
 4. relative frequency
 5. probability that an event will occur
EE. determine the probability that an event will occur
FF. when given the value of a probability, interpret the meaning
GG. use the table for the standard normal distribution to determine probabilities and percent of area
HH. find and use the Z-transformation
II. define and use the following terms:
 1. null hypothesis
 2. alternative hypothesis
 3. test statistic
 4. rejection region
 5. Type I error
 6. Type II error
 7. P-value
JJ. formulate the null hypothesis and alternative hypothesis for a given situation
KK. determine the critical values of test statistics both in one-sided and two-sided situations
LL. use the nine step model for the following:
 1. testing a hypothesis about the mean (large sample)
 2. testing a hypothesis about the mean (small sample)
 3. testing a hypothesis about a population proportion
 4. testing a hypothesis about a population variance
 5. comparing two population means (large sample)
 6. comparing two population means (small sample)
 7. pair difference experimental design
MM. compute and interpret the P-value for several test statistics
NN. use the table for critical values of the t-distribution
OO. use the table for critical value of Chi-Square distribution
PP. find the expected value of an event
QQ. compute and interpret the Chi-Square test for goodness of fit
RR. compute and interpret the Chi-Square test for association between two qualitative variables

Major Topics to be Included

A. Introduction to Statistics
 1. What is statistics?
 2. Uses and misuses
 3. Role of statistics in research
B. Descriptive statistics
 1. Organizing and Displaying Data
 a. frequency distribution
 b. relative frequency distributions
 c. cumulative frequency distributions
 d. stem and leaf displays
 e. bar graphs and stacked bar graphs
 f. pie charts
 g. histograms and line graphs
 2. Measures of central tendency
 a. mean, trimmed mean, median, mode and moving average
 b. interpretation
 3. Measures of Variation
 a. range
 b. variance and standard deviation
 c. percentiles and quartiles
 d. interquartile range
 e. interpretations
 4. Standard scores
C. Probability
 1. Definition
 2. Sample space
 3. Events and their probabilities
D. Normal curves
 1. Standard normal curve
 2. Computations with normal curves
E. Hypothesis Testing
 1. Formulation
a. stating null and alternative hypotheses
b. significance level
c. regions of acceptance and rejection
d. Type I and Type II errors
e. P-values - compute and interpret
f. conclusion and interpretation of results

2. For a population mean
 a. large sample (z-test)
 b. small sample (t-test)

3. For a population proportion

4. For a population variance

5. For the difference in two population means
 a. independent samples (z or t-test)
 b. dependent samples (z or t-test)

6. Chi-square Goodness of Fit Test

7. Chi-square Test of Association

F. Linear Regression and Correlation

1. Scatter plots

2. Method of least squares
 a. finding equation of regression line
 b. computing residuals
 c. average value of a model’s error and the variance of the errors

3. Pearson Correlation Coefficient
 a. calculation
 b. interpretation