NOVA COLLEGE-WIDE COURSE CONTENT SUMMARY
ITE 221 - PC HARDWARE AND OS ARCHITECTURE (3 CR.)

Course Description

Covers instruction about processors, internal functions, peripheral devices, computer organization, memory management, architecture, instruction format, and basic OS architecture. Lecture 3 hours per week.

General Course Purpose

Course Prerequisites/Corequisites

Prerequisites: ITE 115 and placement in MTH 154 or higher.

Course Objectives

Upon completion of this course, the student will be able to:

- a) Explain microprocessors and their instruction set as they relate to computer architecture
- b) Explain input/output interfaces as they relate to computer architecture
- c) Explain primary memory and techniques of memory management as they relate to computer architecture
- d) Explain how computer peripheral devices work and how they interface with the processor unit
- e) Explain how data are represented in computers
- f) Explain how storage devices work and how they interface with the processor unit
- g) Discuss the functions of a computer operating system Discuss parallel processors and parallel processing

Major Topics to be Included

- a) Microprocessor and instruction set
- b) Memory and memory management
- c) Peripheral devices
- d) Storage devices
- e) Data representation
- f) Computer operating system functions
- g) Digital Logic and digital components
- h) Application Management

Student Learning Outcomes

1. Microprocessor and instruction set
 1.1 Describe the internal organization of a computer:
 1.1.1 Central Processing Unit
 1.1.2 Internal Cache
 1.1.3 Clock
 1.1.4 Registers
 1.1.5 System bus
 1.1.6 Control Unit
 1.1.7 Arithmetic and Logic Unit
 1.2 Describe the features of the CPU:
 1.2.1 Clock rate
 1.2.2 Cycle time
 1.2.3 Processing cycle
 1.2.4 Overflow control
 1.2.5 Speed
 1.2.6 Word length
 1.2.7 Instruction set
 1.2.7.1 Instruction set
1.2.7.2 RISC and CISC
1.3 Describe future trends for CPUs

2.0 Memory and memory structure
 2.1 Describe different types of memory
 2.1.1 Random Access Memory
 2.1.2 Direct Access Memory
 2.1.3 Sequential Access Memory
 2.1.4 Read Only Memory
 2.1.4.1 ROM
 2.1.4.2 PROM
 2.1.4.3 EPROM
 2.2 RAM and ROM architecture
 2.3 Describe memory applications
 2.3.1 Buffer
 2.3.2 Cache
 2.3.3 Memory fragmentation

3.0 Peripheral devices
 3.1 Describe various output devices, such as:
 3.1.1 Printers
 3.1.2 Audio output devices
 3.2 Describe various input devices, such as:
 3.2.1 Keyboards
 3.2.2 Pointing devices
 3.2.3 Optical input devices
 3.2.4 Audio input devices

4.0 Secondary Storage devices
 4.1 Describe the function of several magnetic storage devices such as:
 4.1.1 Magnetic Disk
 4.1.2 Magnetic Tape
 4.2 Describe the function of several optical discs
 4.3 Describe the function of flash memory storage devices

5.0 Data representation
 5.1 Number representation
 5.1.1 One's complement
 5.1.2 Two's complement
 5.1.2.1 Two's complement applications
 5.1.3 Sign magnitude
 5.2 Character representation
 5.2.1 Unicode
 5.2.2 ASCII
 5.3 Notations
 5.3.1 Binary
 5.3.2 Octal
 5.3.3 Hexadecimal

6.0 Computer operating system functions
 6.1 Identify the operating system management functions
 6.2 Define the operating system layers
 6.3 Describe resource allocation (single process vs. multiple process)
 6.4 Explain Interrupt processing and scheduling
 6.5 Describe task processing (single-task vs. multitasking)
 6.6 Explain virtual memory
 6.7 Timesharing and pipelining

7.0 Boolean Algebra and Digital Logic
 7.1 Recognize Truth Tables for NOT, OR, AND, XOR.
7.2 Application of bit-wise boolean operations

8.0 Application Management
 8.1 Understand the difference between Applications, Processes and Threads.
 8.1.1 Know the purpose of Process Control Blocks
 8.1.2 Know the purpose of Thread Control Blocks

9.0 Optional Topics
 9.1 Know the difference between machine code and assembly language and the relationship
 between the high level language source code and executable binary files.
 9.2 Understand the process of compilation and linking behind the creation of an executable binary
 file from high-level language source code
 9.3 Be able to apply bitwise Boolean operations with masks to selectively set specific individual bits
 in a byte to 0 or 1. For example: Use Boolean operations to change the case of ASCII characters.
 9.4 Trends in technology
 9.5 Parallel processor architecture

Required Time Allocation per Topic

In order to standardize the core topics of ITE 221 so that a course taught at one campus is equivalent to the
same course taught at another campus, the following student contact hours per topic are required. Each
syllabus should be created to adhere as closely as possible to these allocations. Of course, the topics cannot be
followed sequentially. Many topics are taught best as an integrated whole, often revisiting the topic several
times, each time at a higher level. There are normally 45 student contact hours per semester for a three credit
course. (This includes 15 weeks of instruction and does not include the final exam week so 15 * 3 = 45 hours.
Sections of the course that are given in alternative formats from the standard 16 week section still meet for
the same number of contact hours.) The final exam time is not included in the time table. The category,
(Other optional content), leaves ample time for an instructor to tailor the course to special needs or
resources.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Hours</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Introduction</td>
<td>1</td>
<td>2.22%</td>
</tr>
<tr>
<td>Microprocessors and Instruction Set</td>
<td>6</td>
<td>13.33%</td>
</tr>
<tr>
<td>Memory and Memory Structure</td>
<td>3</td>
<td>6.67%</td>
</tr>
<tr>
<td>Peripheral Devices</td>
<td>3</td>
<td>6.67%</td>
</tr>
<tr>
<td>Secondary Storage Devices</td>
<td>3</td>
<td>6.67%</td>
</tr>
<tr>
<td>Data Representation</td>
<td>6</td>
<td>13.33%</td>
</tr>
<tr>
<td>Computer Operating System Functions</td>
<td>6</td>
<td>13.33%</td>
</tr>
<tr>
<td>Boolean Algebra and Digital Logic</td>
<td>3</td>
<td>6.67%</td>
</tr>
<tr>
<td>Application Management</td>
<td>4</td>
<td>8.89%</td>
</tr>
<tr>
<td>Exams and Quizzes (not including the Final Exam)</td>
<td>5</td>
<td>11.11%</td>
</tr>
<tr>
<td>Additional Topics at discretion of instructor</td>
<td>5</td>
<td>11.11%</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>100%</td>
</tr>
</tbody>
</table>