Chapter 09 Homework Solutions

P: 1, 5, 6, 7, 12, 18, 22, 25*, 27*, 31*, 35*, 36, 39, 50*, 53*, 55*

Problem 1. Three forces are applied to a tree sapling, as shown in Fig. 9-41, to stabilize it. If \(\vec{F}_A = 310 \text{ N} \) and \(\vec{F}_B = 425 \text{ N} \), find \(\vec{F}_C \) in magnitude and direction.

Solution:
\[
\sum \vec{F} = 0
\]
\[
\sum F_x = 0 \quad \Rightarrow \quad F_A + F_B \cos(110^\circ) + F_{Cx} = 0
\]
\[
F_{Cx} = - F_A - F_B \cos(110^\circ) = - 164.6 \text{ N}
\]
\[
\sum F_y = 0 \quad \Rightarrow \quad F_B \sin(110^\circ) + F_{Cy} = 0
\]
\[
F_{Cy} = - F_B \sin(110^\circ) = - 399.4 \text{ N}
\]
\[
F_C = \sqrt{(F_{Cx})^2 + (F_{Cy})^2} = 432.0 \text{ N} \approx 4.3 \times 10^3 \text{ N}
\]
\[
\theta = \tan^{-1} \left(\frac{F_{Cy}}{F_{Cx}} \right) = 67.6^\circ \quad \phi = 180^\circ - 67.6^\circ = 112.4^\circ
\]

Problem 5. Two cords support a chandelier in the manner shown in Fig. 9-4 except that the upper wire makes an angle of 45° with the ceiling. If the cords can sustain a force of 1550 N without breaking, what is the maximum chandelier weight that can be supported?

Solution:
\[\sum F_x = 0 \]
\[F_B - F_A \cos(45^\circ) = 0 \]
\[\Rightarrow F_A = \frac{F_B}{\cos(45^\circ)} > F_B \]
\[\Rightarrow \text{The limit will be } F_A = 1550 \text{ N and } F_B \text{ is something less.} \]

\[\sum F_y = 0 \]
\[F_A \sin(45^\circ) - mg = 0 \]
\[mg = F_A \sin(45^\circ) = (1550 \text{ N}) \sin(45^\circ) = 1.1 \times 10^3 \text{ N} \]

Problem 6. Calculate the forces \(F_A \) and \(F_B \) that the supports exert on the diving board of Fig. 9-42 when a 58-kg person stands at its tip
(a) Ignore the weight of the board.
(b) Take into account the boards' mass of 35 kg. Assume the boards' CG is at its center.

Solution:

![Diagram of diving board with Forces](image)

(a)
\[\sum \tau = 0 \quad \text{about the left end of the board} \]
\[F_A(0 \text{ m}) + F_B(1.0 \text{ m}) - (0 \text{ kg})(9.8 \text{ m/s}^2)(2.0 \text{ m}) - \]
\[- (58.0 \text{ kg})(9.8 \text{ m/s}^2)(4.0 \text{ m}) = 0 \]
\[F_B = 2.3 \times 10^3 \text{ N} \]

(b)
\[\sum F = 0 \]
\[F_A + Mg - F_B = 0 \]
\[F_A = F_B - Mg = 1.7 \times 10^3 \text{ N} \]

(b)
\[\sum \tau = 0 \quad \text{about the left end of the board} \]
\[F_A(0 \text{ m}) + F_B(1.0 \text{ m}) - (35.0 \text{ kg})(9.8 \text{ m/s}^2)(2.0 \text{ m}) - \]
\[- (58.0 \text{ kg})(9.8 \text{ m/s}^2)(4.0 \text{ m}) = 0 \]
\[F_B = 3.0 \times 10^3 \text{ N} \]
\[\sum F = 0 \]
\[F_A + mg + Mg - F_B = 0 \]
\[F_A = F_B - (m + M)g = 2.0 \times 10^3 N \]

Problem 7. A uniform steel beam has a mass of 940 kg. On it is resting half of an identical beam, as shown in Fig. 9-44. What is the vertical support force at each end?

Solution:

\[\sum \tau = 0 \quad \text{about the left end} \]
\[F_A(0 m) - \frac{1}{2} Mg(\frac{l}{4}) - Mg(\frac{l}{2}) + F_B(l) = 0 \]
\[F_B = \frac{5}{8} Mg = 5.8 \times 10^3 N \]

\[\sum F_y = 0 \]
\[F_A - \frac{1}{2} Mg - Mg + F_B = 0 \]
\[F_A = \frac{7}{8} Mg = 8.1 \times 10^3 N \]

Problem 12. Find the tension in the two wires supporting the traffic light shown in Fig. 9-46.

Solution:
Problem 18. Calculate (a) the tension F_T in the wire that supports the 27-kg beam shown in Fig. 9-52 and (b) the force F_W exerted by the wall on the beam (give magnitude and direction).

Solution:

\[\sum F_x = 0 \]
\[F_{T1x} - F_{T2x} = 0 \]

\[\sum F_y = 0 \]
\[F_{T1y} + F_{T2y} - mg = 0 \]

\[F_{T1}\cos(37^\circ) - F_{T2}\cos(53^\circ) = 0 \]
\[F_{T1}\sin(37^\circ) + F_{T2}\sin(53^\circ) - mg = 0 \]

\[F_{T2} = \frac{F_{T1}\cos(37^\circ)}{\cos(53^\circ)} \]
\[F_{T1}\sin(37^\circ) + \left(\frac{F_{T1}\cos(37^\circ)}{\cos(53^\circ)} \right)\sin(53^\circ) - mg = 0 \]

\[F_{T1} = 1.9 \times 10^2 \text{N} \]
\[F_{T2} = 2.6 \times 10^2 \text{N} \]
Problem 22. The 72-kg man's hands in Fig 9-56 are 36 cm apart. His CG is located 75% of the distance from his right hand toward his left. Find the force on each hand due to the ground.

Solution:

(a) \[\sum \tau = 0 \quad \text{about the left end of the beam} \]

\[F_{W_y}(0.0 \text{ m}) - mg \left(\frac{l}{2} \right) + F_{Ty}(l) = 0 \]

\[F_T \sin(40^\circ) = \frac{mg}{2} \]

\[F_T = 2.1 \times 10^2 \text{N} \]

(b) \[\sum F_x = 0 \]

\[F_{W_x} - F_{T_x} = 0 \]

\[F_{W_x} = F_{T_x} = 157.7 \text{ N} \]

\[\sum F_y = 0 \]

\[F_{W_y} + F_{T_y} - mg = 0 \]

\[F_{W_y} = mg - F_{T_y} = 132.3 \text{ N} \]

\[F_W = \sqrt{(F_{W_x})^2 + (F_{W_y})^2} = 2.1 \times 10^2 \text{N} \]

\[\theta = \tan^{-1} \left(\frac{F_{W_y}}{F_{W_x}} \right) = 40^\circ \]
\[\sum \tau = 0 \] about his right arm

\[F_{N\text{right}}(0.0 \text{m}) - mg(0.27 \text{ m}) + F_{N\text{left}}(0.36 \text{ m}) = 0 \]

\[F_{N\text{left}} = 5.3 \times 10^2 \text{N} \]

\[\sum F_y = 0 \]

\[F_{N\text{right}} + F_{N\text{left}} - mg = 0 \]

\[F_{N\text{right}} = mg - F_{N\text{left}} = 1.8 \times 10^2 \text{N} \]
Problem 31. Approximately what magnitude force, F_M, must the extensor muscle in the upper arm exert on the lower arm to hold a 7-3 kg shot put. Assume the lower arm has a mass of 2.8 kg and its CG is 12 cm from the elbow-joint pivot.

Solution:

\[\sum r = 0 \quad \text{about the elbow joint} \]

\[+ F_M(d) + F_J(0.0 \text{ m}) - mg(D) - Mg(L) = 0 \]

\[F_M = \frac{mg(D+L)}{d} = 9.9 \times 10^2 \text{ N} \]
Problem 35. Redo Example 9-9 assuming now that the person is less bent over so that the 30 degree in Fig. 9-14b is instead 45°. What will be the magnitude of F_V on the vertebra?

Solution:

\[W_T = 0.46w \]
\[W_H = 0.07w \]
\[W_A = 0.12w \]

\[\sum T = 0 \quad \text{about the base of the spine} \]
\[F_{M\perp}(0.48 \text{ m}) - W_{H\perp}(0.72 \text{ m}) - W_{A\perp}(0.48 \text{ m}) - W_{T\perp}(0.36 \text{ m}) = 0 \]
\[F_M \sin(12^\circ)(0.48 \text{ m}) - W_H \sin(45^\circ)(0.72 \text{ m}) - W_A \sin(45^\circ)(0.48 \text{ m}) - W_T \sin(45^\circ)(0.36 \text{ m}) = 0 \]
\[F_M = 1.94w \]

\[\sum F_y = 0 \]
\[F_{Vy} - F_{My} - W_T - W_H - W_A = 0 \]
\[F_{Vy} - F_M \sin(33^\circ) - 0.46w - 0.07w - 0.12w = 0 \]
\[F_{Vy} = 1.71w \]

\[\sum F_x = 0 \]
\[F_{Vx} - F_{Mx} = 0 \]
\[F_{Vx} = 1.63w \]

\[F_V = \sqrt{(1.63w)^2 + (1.71w)^2} = 2.4w \]
Problem 39. A marble column of cross-sectional area 1.2 m2 supports a mass of 25 000 kg. (a) What is the stress within the column? (b) What is the strain?

Solution:

(a) Stress \(F = \frac{mg}{A} \frac{(25000 \text{ kg})(9.8 \text{ m/s}^2)}{(1.2 \text{ m}^2)} = 2.042 \times 10^5 \text{ N/m}^2 \)

(b) Strain \(\frac{\text{Stress}}{\text{Young's Modulus}} = \frac{2.042 \times 10^5 \text{ N/m}^2}{50 \times 10^9 \text{ N/m}^2} = 4.1 \times 10^{-6} \)