Section B1: The Nature Of Nerve Signals

1. Every cell has a voltage, or membrane potential, across its plasma membrane
2. Changes in the membrane potential of a neuron give rise to nerve impulses
3. Nerve impulses propagate themselves along an axon
1. Every cell has a voltage, or membrane potential, across its plasma membrane

- A **membrane potential** is a localized electrical gradient across membrane.
 - Anions are more concentrated within a cell.
 - Cations are more concentrated in the extracellular fluid.
• Measuring Membrane Potentials.

Fig. 48.6a

• An unstimulated cell usually have a resting potential of -70mV.
• How a Cell Maintains a Membrane Potential.

• Cations.
 • K\(^+\) the principal intracellular cation.
 • Na\(^+\) is the principal extracellular cation.

• Anions.
 • Proteins, amino acids, sulfate, and phosphate are the principal intracellular anions.
 • Cl\(^-\) is principal extracellular anion.
• **Ungated ion channels** allow ions to diffuse across the plasma membrane.

• These channels are always open.

• This diffusion does not achieve an equilibrium since sodium-potassium pump transports these ions against their concentration gradients.

Fig. 48.7

Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings
2. Changes in the membrane potential of a neuron give rise to nerve impulses

- **Excitable cells** have the ability to generate large changes in their membrane potentials.
 - **Gated ion channels** open or close in response to stimuli.
 - The subsequent diffusion of ions leads to a change in the membrane potential.
Types of gated ions.

- **Chemically-gated ion channels** open or close in response to a chemical stimulus.

- **Voltage-gated ion channels** open or close in response to a change in membrane potential.
• Graded Potentials: Hyperpolarization and Depolarization
 • **Graded potentials** are changes in membrane potential
• Hyperpolarization.

• Gated K^+ channels open \rightarrow K^+ diffuses out of the cell \rightarrow the membrane potential becomes more negative.
• **Depolarization.**

 • Gated Na\(^+\) channels open → Na\(^+\) diffuses into the cell → the membrane potential becomes less negative.

![Fig. 48.8b](image-url)
• The Action Potential: All or Nothing Depolarization.

 • If graded potentials sum to ≈-55mV a **threshold potential** is achieved.

 • This triggers an **action potential**.

 • Axons only.

Fig. 48.8c
• In the resting state closed voltage-gated K^+ channels open slowly in response to depolarization.

• Voltage-gated Na^+ channels have two gates.
 • Closed activation gates open rapidly in response to depolarization.
 • Open inactivation gates close slowly in response to depolarization.
• Step 1: Resting State.
• Step 2: Threshold.
• Step 3: **Depolarization** phase of the action potential.
• Step 4: Repolarizing phase of the action potential.

Fig. 48.9
• Step 5: Undershoot.
• During the undershoot both the Na\(^+\) channel’s activation and inactivation gates are closed.
 • At this time the neuron cannot depolarize in response to another stimulus: **refractory period**.
3. Nerve impulses propagate themselves along an axon

- The action potential is repeatedly regenerated along the length of the axon.
 - An action potential achieved at one region of the membrane is sufficient to depolarize a neighboring region above threshold.
 - Thus triggering a new action potential.
 - The refractory period assures that impulse conduction is unidirectional.
• **Saltatory conduction.**

 • In myelinated neurons only unmyelinated regions of the axon depolarize.

 • Thus, the impulse moves faster than in unmyelinated neurons.

Fig. 48.11