Section C2: Bryophytes (continued)

3. Bryophyte sporophytes disperse enormous numbers of spores
4. Bryophytes provide many ecological and economic benefits
3. Bryophyte sporophytes disperse enormous numbers of spores

- While the bryophyte sporophyte does have photosynthetic plastids, they cannot live apart from the maternal gametophyte.

- A bryophyte sporophyte remains attached to its parental gametophyte throughout the sporophyte’s lifetime.
 - It depends on the gametophyte for sugars, amino acids, minerals and water.

- Bryophytes have the smallest and simplest sporophytes of all modern plant groups.
• Liverworts have the simplest sporophytes among the bryophytes.

 • They consist of a short stalk bearing a round sporangia which contains the developing spores, and a nutritive foot embedded in gametophyte tissues.
• Hornwort and moss sporophytes are larger and more complex.
 • Hornwort sporophytes resemble grass blades and have a cuticle.
 • The sporophytes of hornworts and mosses have epidermal stomata, like vascular plants.
 • The sporophytes of mosses start out green and photosynthetic, but turn tan or brownish red when ready to release their spores.
• Moss sporophytes consist of a **foot**, an elongated stalk (the **seta**), and a sporangium (the **capsule**).

• The foot gathers nutrients and water from the parent gametophyte via transfer cells.

• The stalk conducts these materials to the capsule.

• In most mosses, the seta becomes elongated, elevating the capsule and enhancing spore dispersal.

Fig. 29.16x

Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings
• The moss capsule (sporangium) is the site of meiosis and spore production.
 • One capsule can generate over 50 million spores.

• When immature, it is covered by a protective cap of gametophyte tissue, the **calyptra**.
 • This is lost when the capsule is ready to release spores.

• The upper part of the capsule, the **peristome**, is often specialized for gradual spore release.
4. Bryophytes provide many ecological and economic benefits

• Wind dispersal of lightweight spores has distributed bryophytes around the world.

• They are common and diverse in moist forests and wetlands.

• Some even inhabit extreme environments like mountaintops, tundra, and deserts.
 • Mosses can lose most of their body water and then rehydrate and reactivate their cells when moisture again becomes available.
• *Sphagnum*, a wetland moss, is especially abundant and widespread.

 • It forms extensive deposits of undecayed organic material, called **peat**.

 • Wet regions dominated by *Sphagnum* or peat moss are known as peat bogs.

 • Its organic materials does not decay readily because of resistant phenolic compounds and acidic secretions that inhibit bacterial activity.
• Peatlands, extensive high-latitude boreal wetland occupied by *Sphagnum*, play an important role as carbon reservoirs, stabilizing atmospheric carbon dioxide levels.

• *Sphagnum* has been used in the past as diapers and a natural antiseptic material for wounds.

• Today, it is harvested for use as a soil conditioner and for packing plants roots because of the water storage capacity of its large, dead cells.
• Bryophytes were probably Earth’s only plants for the first 100 million years that terrestrial communities existed.

• Then vegetation began to take on a taller profile with the evolution of vascular plants.