Course Description

Focuses in-depth instruction in the handling of critical tasks of planning and implementing large databases. Includes an introduction to concepts of advanced data warehousing and database configuration. Lecture 3 hours per week.

General Course Purpose

The purpose of this course is to provide a comprehensive introduction to database management. The course will define essential database terms and concepts. The emphasis of the course is on the design, development, and use of a relational database. The student will learn the basics of drawing an Entity-Relationship diagram (ERD) to represent user requirements, transform the ERD to a normalized relational design, and then use Structured Query Language (SQL) to implement and work with the database.

Course Prerequisites/Corequisites

Prerequisite: ITE 115

Course Objectives

Upon completing the course, the student will be able to:

a) Define essential database vocabulary
b) Effectively apply data relationships and normalization techniques
c) Describe the transformation of database design from a conceptual user model (e.g., an ERD) to a normalized relational model
d) Explain and apply Structured Query Language (SQL) in a database environment
e) Describe the methods available for minimizing DBMS risks and security failures
f) Characterize the roles and responsibilities of the Database Administrator (DBA)
g) Apply fundamental database concepts to an information systems problem

Major Topics to be Included

a) Basic Database Concepts
b) Relational Database Terms and Concepts
c) Normalization
d) Structured Query Language
e) Data Modeling
f) Database Design
g) Database Management and Administration
h) Business Intelligence / Basic Data Warehousing Concepts

Student Learning Outcomes

Basic Database Concepts
a) Define basic database terms and principles
b) Discuss why databases are used
c) Contrast (traditional) file processing with database processing
d) Describe the components of a database/database management system
e) Describe the purpose and functions of a database management system (DBMS)

Relational Database Terms and Concepts
 a) Describe the conceptual foundation of the relational model
 b) Distinguish between relations and non-relational tables
 c) Explain basic relational terminology to include, but not limited to, relation/table, tuple/row, attribute/column, cardinality/multiplicity
 d) Explain the meaning and importance of keys, foreign keys, and related terminology
 e) Explain how foreign keys and intersection relations represent relationships
 f) Explain the purpose and use of surrogate keys
 g) Explain the meaning of referential integrity

Normalization
 a) Define normalization
 b) Explain the impetus behind use of Normalization in database design
 c) Explain the nature and background of normalization theory
 d) Apply the normalization process to produce a relation in 3NF
 e) Explain the meaning of functional dependencies

Structured Query Language
 a) Write basic SQL statements for creating database structures
 b) Write basic SQL statements to add data to a database
 c) Write basic SQL SELECT statements and options for processing a single table
 d) Write basic SQL SELECT statements for processing multiple tables
 e) Write basic SQL statements to modify and delete data from a database
 f) Write basic SQL statements to modify and delete database tables and constraints
 g) Write basic SQL statements for creating and using views
 h) Explain the reasons for using views
 i) Meet several times during the semester in a computer lab to practice as a class

Data Modeling
 a) Describe the basic stages of database development
 b) Explain the purpose and role of a data model
 c) Describe the principal components of the E-R data model
 d) Interpret traditional E-R diagrams
 e) Interpret Information Engineering (IE) Crow's Foot E-R diagrams
 f) Construct E-R diagrams
 g) Represent binary relationships to include 1:1, 1:N, N:M with the E-R model
 h) Explain weak entities and how to use them
 i) Explain non-identifying and identifying relationships and know how to use them
 j) Create an E-R diagram from source documents

Database Design (logical and physical)
 a) Transform E-R data models into relational designs
 b) Recognize and describe motivations and processes for de-normalization
 c) Represent weak entities with the relational model
 d) Represent 1:1, 1:N, and N:M binary relationships

Database Management and Administration
 a) Describe the need for, and importance of, database administration
 b) Describe different ways of processing a database
 c) Describe the need for concurrency control, security, and backup and recovery
 d) Describe typical problems that can occur when multiple users process a database concurrently
 e) Explain the use of locking and the problem of deadlock
 f) Distinguish between optimistic and pessimistic locking
g) Describe specific design and implementation strategies for improving database security
h) Distinguish between recovery via reprocessing and recovery via rollback/rollforward
i) Explain the nature of the tasks required for recovery using rollback/rollforward
j) Describe basic administrative and managerial DBA functions
k) Explain distributed database processing
l) Explain the concept of object-relational databases

Business Intelligence / Basic Data Warehousing Concepts
a) Explain the basic concepts of data warehouses and data marts
b) Explain the basic concepts of dimensional databases
c) Explain the basic concepts of business intelligence (BI) systems
d) Explain the basic concepts of OnLine Analytical Procession (OLAP) and data mining

Database Project

Given a business case (project scenario), the student will:
a) Explain how database principles may be applied as a part of the IT solution
b) Draw an ERD to represent the pertinent user data
c) Transform the ERD into a 3NF relational model
d) Write the necessary SQL to create the database structures (CREATE and INSERT)
e) Write the necessary SQL to manipulate data into meaningful query (report) results

Required Time Allocation per Topic

In order to standardize the core topics of ITD 256 so that a course taught at one campus is equivalent to the same course taught at another campus, the following student contact hours per topic are required. The topics do not need to be followed sequentially. Many topics are taught best as an integrated whole, often revisiting the topic several times, each time at a higher level. There are normally 45 student-contact-hours per semester for a three credit course. (This includes 15 weeks of instruction and does not include the final exam week so 15* 3 = 45 hours. Sections of the course that are given in alternative formats from the standard 16 week section still meet for the same number of contact hours.) The final exam time is not included in the time table. The last category, Other Optional Content, leaves time for an instructor to tailor the course to special needs or resources.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Hours</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Database Concepts</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Relational Database Terms and Concepts</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Normalization</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Structured Query Language</td>
<td>11</td>
<td>24</td>
</tr>
<tr>
<td>Data Modeling</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Database Design</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Database Management and Administration</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Business Intelligence / Basic Data Warehousing Concepts</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Other Optional Content</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>100</td>
</tr>
</tbody>
</table>